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List of exercises I

101. (warm up) Throw a 6-sided die, write down the σ-algebra generated by 1
and 4. (Interpretation: if you can answer ’did I get a 1’ and ’did I get a 4’, you
can answer all the yes/no questions in this σ-algebra)

102. Let τ1, τ2 be Ft-stopping times. Argue that

(a) τ1 ∧ τ2 is an stopping time

(b) τ1 ∨ τ2 is an stopping time

(c) τ1 + τ2 is an stopping time

(d) τ1 − τ2 is not necessarily an stopping time (give a counter example)

103. Show that Cov(Bs, Bt) = s ∧ t where B is a standard Brownian motion.

104. (Brownian scaling) Let Bt be a 1-d standard Brownian motion and let c > 0
be a constant. Show that

B̃t :=
1

c
Bc2t

is also a standard Brownian motion. Give your intuition of this property.

105. (Moments of BM) We know that Bt ∼ N(0, t) This implies that (by the
characteristic function of a Gaussian)

E[eiuBt ] = e−
1
2
u2t.

Apply the power series expansion of the exponential function on both sides,
compare the terms with the same power of u and show that

E[B4
t ] = 3t2.

More generally, with tiny bit more effort, one can show that for k ∈ N,

E[B2k
t ] =

(2k)!

2kk!
tk.

(We will solve this problem later in this module in a different way.)

106. (Moments of BM again) Let Wt ∈ R, W0 = 0 be a Brownian motion.
Define

βk(t) = E[W k
t ], k = 0, 1, . . . , t ≥ 0.

i) Use Ito’s formula to show that

βk(t) =
1

2
k(k − 1)

∫ t

0

βk−2(s)ds, k ≥ 2.
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ii) Show that
E[W 2k+1

t ] = 0

and

E[W 2k
t ] =

(2k)!tk

2kk!

for k = 1, 2, . . . .

201. (Martingales) Show that the following stochastic processes are martingales:

(a) Mt = B2
t − t, (Hint: Write Bt = Bt −Bs +Bs, for s < t)

(b) Mt = E[X|Ft], (”Doob’s m.g.”. It can be thought of as the evolving se-
quence of best approximations to the random variable X based on accu-
mulated information.)

(c) Mt = t2Bt − 2
∫ t

0
sBsds,

(d) Mt = B1(t)B2(t), where (B1, B2) is a 2-dim standard BM.

202. *(Construction of the Ito integral) Let B be a standard Brownian motion.
Find a sequence of piecewise constant process φn(t, ω) such that

E[

∫ t

0

(φn(s)−B(s))2ds]→ 0.

Compute
∫ t

0
φn(s)dBs and show that it converges (in what sense?) to 1

2
(B2

t −t)
if we consider finer and finer partitions. Deduce that∫ t

0

BsdBs =
1

2
(B2

t − t).

203. (Continuation of 202) What does the result of 202 tell you? How does it
relate to problem 201.a?

204. (Stratonovich integral) When using Btj∗ to approximate Bt on an interval
[tj, tj+1], if tj∗ = tj it yields an Ito integral. Now take tj∗ = 1

2
(tj + tj+1), define

the Stratonovich integral by∫ T

0

X(t, ω) ◦ dBt(ω) = lim
∆tj→0

X(tj∗ , ω)∆Bj

Use the example
∫ T

0
Bt ◦ dBt to see that the Stratonovich integral follows the

usual chain rule. Compare to exercise 202, does Ito follow the normal chain
rule?

205. Argue that the Ito integral
∫ t

0
sdBs is a normal random variable. Show that it

follows the distribution N(0, 1
3
t2).

Remark. In fact, integrate any deterministic function f(t) with respect to the
Brownian motion yields a Gaussian process

It(f) =

∫ t

0

f(s)dBs ∼ N(0,

∫ t

0

f 2(s)ds).
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The exercises in section 3 contains quite some hands-on training on
using Ito’s formula (301-305). You can skip them if you are already
familiar with Ito calculus.

In the following exercises, When we say a geometric brownian motion (GBM)
we refer to the process

dXt = µXtdt+ σXtdBt, X0 = x.

301. Use Ito’s formula to show that the expectation of a GBM satisfies

E[Xt] = xeµt.

302. Use Ito’s formula to calculate
∫ t

0
B2
sdBs.

303. Let αt be some L2 stochastic process, and define the 1d stochastic process

Zt = exp(

∫ t

0

αsdBs −
1

2

∫ t

0

α2
sds).

Use Ito’s formula to show that dZt = αtZtdBt, and conclude that it is a
martingale (given that αtZt ∈ L2). (Remark. This exercise provides a way to
construct martingales.)

304. Solve the 1d SDE dXt = Xtdt + dBt with X0 = x (Hint: multiply both sides
with an ’integrating factor’ e−t).

305. Solve the 1d SDE dYt = rdt+ αY dBt, where Y0 = 0, r, α ∈ R. (Hint: multiply
both sides with an ’integrating factor’ Ft = exp(−αBt + 1

2
α2t)).

306. (Brownian bridge) Let Xt be the solution to the following SDE with X0 = 0:

dXt = − 1

1− t
Xtdt+ dWt, 0 ≤ t < 1.

i) Use Ito’s lemma to show that Xt = (1− t)
∫ t

0
dWs

1−s solves the above SDE.
(Hint: consider the process Yt =

∫ t
0
dWs

1−s .)
ii) Argue that for t ∈ [0, 1), Xt is a Gaussian random variable with mean 0

and variance t(1− t). Show further that Xt converges to 0 in L2 as t→ 1:

lim
t↑1

E[X2
t ] = 0.

(Remark: the process Xt is pinned on both ends, hence a ”bridge”)

307. (SDE on a circle) Consider the following equation

dXt = −1

2
Xtdt− YtdWt,

dYt = −1

2
Ytdt+XtdWt.

Let (X0, Y0) = (x, y) such that x2 + y2 = 1. Show that X2
t + Y 2

t = 1 for all t
and thus this SDE lives on the unit circle.
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308. (Hyperbolic SDE) Similarly, consider the following equation

dXt =
1

2
Xtdt+ YtdWt,

dYt =
1

2
Ytdt+XtdWt.

Show that X2
t − Y 2

t is constant for all t.

309. LetXt, Yt be two one-dimensional Ito processes, prove the following Ito product
rule:

dXtYt = XtdYt + YtdXt + dXtdYt.

310. *(Complex BM) Given a two-dimensional Brownian motion (B(1), B(2)), de-
fine the complex Brownian motion

Bc
t := B

(1)
t + iB

(2)
t .

Let f : C→ C be a function of the form f(z) = fR(z) + ifC(z), for any z ∈ C,
and fR, fC : C → R. If f is is analytic, i.e. satisfies the Cauchy-Riemann
equations:

∂fR
∂x

=
∂fC
∂y

,
∂fR
∂y

= −∂fC
∂x

,

where z = x+ iy. Show that the identity df(Bc
t ) = f ′(Bc

t )dB
c
t holds, where f ′

denotes the complex derivative of f .

Module 2
401. Find the infinitesimal generator for the following Ito processes:

(a) dXt = βXtdt+ σdBt,

(b) dXt = µXtdt+ σXtdBt,

(c) the n-dimensional Brownian motion,

(d) the (n+1)-dimensional stochastic process (t, Bt), where Bt ∈ Rn.

402. Find an Ito process whose generator is the following:

(a) Lf(x) = f ′(x) + f ′′(x),

(b) Lf(x) = rf ′(x) + 1
2
αx2f ′′(x).

403. Prove the 1d general Feynman-Kac theorem when D = R, and r > 0 being a
constant. (Hint: apply Ito’s formula on Ys = e−r(s−t)u(s,Xs)).

404. Use Feynman-Kac to solve the PDE with terminal condition:{
ut + 1

2
uxx = 0,

u(x, T ) = x4.
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405. Use Feynman-Kac to solve the PDE with initial condition:{
ut − µxux − 1

2
σ2uxx = 0,

u(0, x) = Φ(x).

(Hint: take v(t, x) = u(T − t, x))

406. Let τ = inf{t > 0 : Bt /∈ (−a, b)}, where a, b > 0. Use Dynkin’s formula to
determine E[τ ].

407. Let J =
∫ 1

0
tdBt Use Dynkin’s formula to find the moment generating function

m (u) = E[euJ ], and show that J ∼ N(0, 1
3
). (Hint: let f(x) = eux)

408. (The Ornstein-Uhlenbeck process) For a given standard Brownian mo-
tion W on some probability space (Ω,F ,P), consider the Ornstein-Uhlenbeck
process which solves the following SDE:

dXt = µXtdt+ σdWt, X0 = x, (1)

where µ, σ ∈ R.

i) Show that equation (1) admits a unique strong solution.

ii) Use Ito’s formula to find the solution to the above equation (Hint: con-
sider the process e−µtXt).

iii) Fix T ≥ 0, find E[XT ] and V ar[XT ].

iv) We wish now to compute the characteristic function φ of XT :

φXT
(ξ) := E[eiξXT |X0 = x], for ξ ∈ R.

Fix ξ ∈ R, use the Feynman-Kac theorem to show that the function
u : [0, T ] × R → R defined by u(t, x) := E[eiξXT |Xt = x] satisfy the
following PDE:

ut + µxux +
1

2
σ2uxx = 0, for all (t, x) ∈ [0, T )× R.

Determine the terminal condition u(T, x).
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