List of exercises I

101. (warm up) Throw a 6 -sided die, write down the σ-algebra generated by 1 and 4. (Interpretation: if you can answer 'did I get a 1' and 'did I get a 4', you can answer all the yes/no questions in this σ-algebra)
102. Let τ_{1}, τ_{2} be \mathcal{F}_{t}-stopping times. Argue that
(a) $\tau_{1} \wedge \tau_{2}$ is an stopping time
(b) $\tau_{1} \vee \tau_{2}$ is an stopping time
(c) $\tau_{1}+\tau_{2}$ is an stopping time
(d) $\tau_{1}-\tau_{2}$ is not necessarily an stopping time (give a counter example)
103. Show that $\operatorname{Cov}\left(B_{s}, B_{t}\right)=s \wedge t$ where B is a standard Brownian motion.
104. (Brownian scaling) Let B_{t} be a 1-d standard Brownian motion and let $c>0$ be a constant. Show that

$$
\tilde{B}_{t}:=\frac{1}{c} B_{c^{2} t}
$$

is also a standard Brownian motion. Give your intuition of this property.
105. (Moments of $\mathbf{B M}$) We know that $B_{t} \sim \mathrm{~N}(0, t)$ This implies that (by the characteristic function of a Gaussian)

$$
\mathrm{E}\left[e^{i u B_{t}}\right]=e^{-\frac{1}{2} u^{2} t} .
$$

Apply the power series expansion of the exponential function on both sides, compare the terms with the same power of u and show that

$$
\mathrm{E}\left[B_{t}^{4}\right]=3 t^{2} .
$$

More generally, with tiny bit more effort, one can show that for $k \in \mathbb{N}$,

$$
\mathrm{E}\left[B_{t}^{2 k}\right]=\frac{(2 k)!}{2^{k} k!} t^{k} .
$$

(We will solve this problem later in this module in a different way.)
106. (Moments of BM again) Let $W_{t} \in \mathbb{R}, W_{0}=0$ be a Brownian motion. Define

$$
\beta_{k}(t)=\mathbb{E}\left[W_{t}^{k}\right], \quad k=0,1, \ldots, t \geq 0 .
$$

i) Use Ito's formula to show that

$$
\beta_{k}(t)=\frac{1}{2} k(k-1) \int_{0}^{t} \beta_{k-2}(s) d s, \quad k \geq 2 .
$$

ii) Show that

$$
\mathbb{E}\left[W_{t}^{2 k+1}\right]=0
$$

and

$$
\mathbb{E}\left[W_{t}^{2 k}\right]=\frac{(2 k)!t^{k}}{2^{k} k!}
$$

for $k=1,2, \ldots$.
201. (Martingales) Show that the following stochastic processes are martingales:
(a) $M_{t}=B_{t}^{2}-t$, (Hint: Write $B_{t}=B_{t}-B_{s}+B_{s}$, for $\left.s<t\right)$
(b) $M_{t}=\mathrm{E}\left[X \mid \mathcal{F}_{t}\right]$, ("Doob's m.g.". It can be thought of as the evolving sequence of best approximations to the random variable X based on accumulated information.)
(c) $M_{t}=t^{2} B_{t}-2 \int_{0}^{t} s B_{s} d s$,
(d) $M_{t}=B_{1}(t) B_{2}(t)$, where $\left(B_{1}, B_{2}\right)$ is a 2-dim standard BM.
202. *(Construction of the Ito integral) Let B be a standard Brownian motion. Find a sequence of piecewise constant process $\phi_{n}(t, \omega)$ such that

$$
\mathbb{E}\left[\int_{0}^{t}\left(\phi_{n}(s)-B(s)\right)^{2} d s\right] \rightarrow 0
$$

Compute $\int_{0}^{t} \phi_{n}(s) d B_{s}$ and show that it converges (in what sense?) to $\frac{1}{2}\left(B_{t}^{2}-t\right)$ if we consider finer and finer partitions. Deduce that

$$
\int_{0}^{t} B_{s} d B_{s}=\frac{1}{2}\left(B_{t}^{2}-t\right)
$$

203. (Continuation of 202) What does the result of 202 tell you? How does it relate to problem 201.a?
204. (Stratonovich integral) When using $B_{t_{j^{*}}}$ to approximate B_{t} on an interval $\left[t_{j}, t_{j+1}\right]$, if $t_{j^{*}}=t_{j}$ it yields an Ito integral. Now take $t_{j^{*}}=\frac{1}{2}\left(t_{j}+t_{j+1}\right)$, define the Stratonovich integral by

$$
\int_{0}^{T} X(t, \omega) \circ d B_{t}(\omega)=\lim _{\Delta t_{j} \rightarrow 0} X\left(t_{j^{*}}, \omega\right) \Delta B_{j}
$$

Use the example $\int_{0}^{T} B_{t} \circ d B_{t}$ to see that the Stratonovich integral follows the usual chain rule. Compare to exercise 202, does Ito follow the normal chain rule?
205. Argue that the Ito integral $\int_{0}^{t} s d B_{s}$ is a normal random variable. Show that it follows the distribution $N\left(0, \frac{1}{3} t^{2}\right)$.
Remark. In fact, integrate any deterministic function $f(t)$ with respect to the Brownian motion yields a Gaussian process

$$
I_{t}(f)=\int_{0}^{t} f(s) d B_{s} \sim N\left(0, \int_{0}^{t} f^{2}(s) d s\right) .
$$

The exercises in section 3 contains quite some hands-on training on using Ito's formula (301-305). You can skip them if you are already familiar with Ito calculus.

In the following exercises, When we say a geometric brownian motion (GBM) we refer to the process

$$
d X_{t}=\mu X_{t} d t+\sigma X_{t} d B_{t}, X_{0}=x
$$

301. Use Ito's formula to show that the expectation of a GBM satisfies

$$
\mathbb{E}\left[X_{t}\right]=x e^{\mu t} .
$$

302. Use Ito's formula to calculate $\int_{0}^{t} B_{s}^{2} d B_{s}$.
303. Let α_{t} be some L^{2} stochastic process, and define the 1 d stochastic process

$$
Z_{t}=\exp \left(\int_{0}^{t} \alpha_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} \alpha_{s}^{2} d s\right)
$$

Use Ito's formula to show that $d Z_{t}=\alpha_{t} Z_{t} d B_{t}$, and conclude that it is a martingale (given that $\alpha_{t} Z_{t} \in L^{2}$). (Remark. This exercise provides a way to construct martingales.)
304. Solve the 1d SDE $d X_{t}=X_{t} d t+d B_{t}$ with $X_{0}=x$ (Hint: multiply both sides with an 'integrating factor' e^{-t}).
305. Solve the 1d SDE $d Y_{t}=r d t+\alpha Y d B_{t}$, where $Y_{0}=0, r, \alpha \in \mathbb{R}$. (Hint: multiply both sides with an 'integrating factor' $\left.F_{t}=\exp \left(-\alpha B_{t}+\frac{1}{2} \alpha^{2} t\right)\right)$.
306. (Brownian bridge) Let X_{t} be the solution to the following SDE with $X_{0}=0$:

$$
d X_{t}=-\frac{1}{1-t} X_{t} d t+d W_{t}, \quad 0 \leq t<1
$$

i) Use Ito's lemma to show that $X_{t}=(1-t) \int_{0}^{t} \frac{d W_{s}}{1-s}$ solves the above SDE. (Hint: consider the process $Y_{t}=\int_{0}^{t} \frac{d W_{s}}{1-s}$.)
ii) Argue that for $t \in[0,1), X_{t}$ is a Gaussian random variable with mean 0 and variance $t(1-t)$. Show further that X_{t} converges to 0 in L^{2} as $t \rightarrow 1$:

$$
\lim _{t \uparrow 1} \mathbb{E}\left[X_{t}^{2}\right]=0
$$

(Remark: the process X_{t} is pinned on both ends, hence a "bridge")
307. (SDE on a circle) Consider the following equation

$$
\begin{aligned}
d X_{t} & =-\frac{1}{2} X_{t} d t-Y_{t} d W_{t}, \\
d Y_{t} & =-\frac{1}{2} Y_{t} d t+X_{t} d W_{t} .
\end{aligned}
$$

Let $\left(X_{0}, Y_{0}\right)=(x, y)$ such that $x^{2}+y^{2}=1$. Show that $X_{t}^{2}+Y_{t}^{2}=1$ for all t and thus this SDE lives on the unit circle.
308. (Hyperbolic SDE) Similarly, consider the following equation

$$
\begin{aligned}
d X_{t} & =\frac{1}{2} X_{t} d t+Y_{t} d W_{t} \\
d Y_{t} & =\frac{1}{2} Y_{t} d t+X_{t} d W_{t}
\end{aligned}
$$

Show that $X_{t}^{2}-Y_{t}^{2}$ is constant for all t.
309. Let X_{t}, Y_{t} be two one-dimensional Ito processes, prove the following Ito product rule:

$$
d X_{t} Y_{t}=X_{t} d Y_{t}+Y_{t} d X_{t}+d X_{t} d Y_{t}
$$

310. *(Complex BM) Given a two-dimensional Brownian motion $\left(B^{(1)}, B^{(2)}\right)$, define the complex Brownian motion

$$
B_{t}^{c}:=B_{t}^{(1)}+i B_{t}^{(2)} .
$$

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a function of the form $f(z)=f_{\mathbb{R}}(z)+i f_{\mathbb{C}}(z)$, for any $z \in \mathbb{C}$, and $f_{\mathbb{R}}, f_{\mathbb{C}}: \mathbb{C} \rightarrow \mathbb{R}$. If f is is analytic, i.e. satisfies the Cauchy-Riemann equations:

$$
\frac{\partial f_{\mathbb{R}}}{\partial x}=\frac{\partial f_{\mathbb{C}}}{\partial y}, \quad \frac{\partial f_{\mathbb{R}}}{\partial y}=-\frac{\partial f_{\mathbb{C}}}{\partial x}
$$

where $z=x+i y$. Show that the identity $d f\left(B_{t}^{c}\right)=f^{\prime}\left(B_{t}^{c}\right) d B_{t}^{c}$ holds, where f^{\prime} denotes the complex derivative of f.

Module 2

401. Find the infinitesimal generator for the following Ito processes:
(a) $d X_{t}=\beta X_{t} d t+\sigma d B_{t}$,
(b) $d X_{t}=\mu X_{t} d t+\sigma X_{t} d B_{t}$,
(c) the n-dimensional Brownian motion,
(d) the $(\mathrm{n}+1)$-dimensional stochastic process $\left(t, B_{t}\right)$, where $B_{t} \in \mathbb{R}^{n}$.
402. Find an Ito process whose generator is the following:
(a) $\mathcal{L} f(x)=f^{\prime}(x)+f^{\prime \prime}(x)$,
(b) $\mathcal{L} f(x)=r f^{\prime}(x)+\frac{1}{2} \alpha x^{2} f^{\prime \prime}(x)$.
403. Prove the 1d general Feynman-Kac theorem when $D=\mathbb{R}$, and $r>0$ being a constant. (Hint: apply Ito's formula on $Y_{s}=e^{-r(s-t)} u\left(s, X_{s}\right)$).
404. Use Feynman-Kac to solve the PDE with terminal condition:

$$
\left\{\begin{array}{l}
u_{t}+\frac{1}{2} u_{x x}=0 \\
u(x, T)=x^{4}
\end{array}\right.
$$

405. Use Feynman-Kac to solve the PDE with initial condition:

$$
\left\{\begin{array}{l}
u_{t}-\mu x u_{x}-\frac{1}{2} \sigma^{2} u_{x x}=0, \\
u(0, x)=\Phi(x)
\end{array}\right.
$$

$($ Hint: take $v(t, x)=u(T-t, x))$
406. Let $\tau=\inf \left\{t>0: B_{t} \notin(-a, b)\right\}$, where $a, b>0$. Use Dynkin's formula to determine $\mathbb{E}[\tau]$.
407. Let $J=\int_{0}^{1} t d B_{t}$ Use Dynkin's formula to find the moment generating function $m(u)=\mathbb{E}\left[e^{u J}\right]$, and show that $J \sim N\left(0, \frac{1}{3}\right)$. (Hint: let $f(x)=e^{u x}$)
408. (The Ornstein-Uhlenbeck process) For a given standard Brownian motion W on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider the Ornstein-Uhlenbeck process which solves the following SDE:

$$
\begin{equation*}
d X_{t}=\mu X_{t} d t+\sigma d W_{t}, \quad X_{0}=x, \tag{1}
\end{equation*}
$$

where $\mu, \sigma \in \mathbb{R}$.
i) Show that equation (1) admits a unique strong solution.
ii) Use Ito's formula to find the solution to the above equation (Hint: consider the process $e^{-\mu t} X_{t}$).
iii) Fix $T \geq 0$, find $\mathbb{E}\left[X_{T}\right]$ and $\operatorname{Var}\left[X_{T}\right]$.
iv) We wish now to compute the characteristic function ϕ of X_{T} :

$$
\phi_{X_{T}}(\xi):=\mathbb{E}\left[e^{i \xi X_{T}} \mid X_{0}=x\right], \text { for } \xi \in \mathbb{R} .
$$

Fix $\xi \in \mathbb{R}$, use the Feynman-Kac theorem to show that the function $u:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $u(t, x):=\mathbb{E}\left[e^{i \xi X_{T}} \mid X_{t}=x\right]$ satisfy the following PDE:

$$
u_{t}+\mu x u_{x}+\frac{1}{2} \sigma^{2} u_{x x}=0, \text { for all }(t, x) \in[0, T) \times \mathbb{R}
$$

Determine the terminal condition $u(T, x)$.

